المعين Options
المعين Options
Blog Article
هندسة إقليدية · مضلع · ضلع · زاوية · مثلث · دائرة
الزوايا فيه اثنتان حادّتان واثنتان منفرجتان، وفي حال كانت إحدى هذه الزوايا قائمة يُصبح الشكل مربّعاً.
المعين هو من الأشكال الهندسية الرباعية؛ أي أنه يتكون من أربعة أضلاع، وهو يشبه متوازي الأضلاع، لكن يختلف عنه في أن أطوال أضلاعه تكون متساويةً، له أربع زاويا، كل زاويتين متقابلتين فيه تكون متساويتين، وكل ضلعين متقابلين فيه متوازيان.
ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي :
الحساب بمعرفة طولَي القُطرَين، وذلك عن طريق القانون التالي:
ملحوظة: بشكل عام ، كل مربع هو معين ، لأنه يحتوي على جميع شروط المعين ، لكن العكس ليس صحيحا.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
هناك العديد من طرق حساب مساحة المعين التي يمكن استخدامها بكل سهولة عند معرفة المعطيات اللازمة لكل طريقة، فمساحة المعين تُعبّر عن المنطقة المحصورة بين أضلاعها الأربعة والتي تكون بالوحدة المربعة، ومن أبرز طرق حساب مساحة المعين ما يأتي: استخدام طول الأقطار
فتح المعين بشرح قرة العين بمهمات الدين للإمام أحمد زين الدين بن عبد العزيز المَعْبَري المليباري الفَنَّاني here الشافعي by
العلوم الطبيعية، الرياضيات ما الفرق بين خصائص المعين والمربع؟
لحساب محيط المعين علينا إيجاد مجموع أطوال أضلاعه وبما أن جميع أضلاع المعين كالمربع متساوية في طولها؛ يمكن التعبير عن محيط المعين بالعلاقة:[٢]
عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا الحصول على معين آخر داخل المعين الأصلي.
ويمكنك ترتيب الفرق بينهما في جدول على لوحة كبيرة يوضح الاختلافات بينهما كالآتي:
ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:
يمكن حساب مساحة المعيّن إذا كانت أطوال أٌقطاره معلومة وفق العلاقة الرياضية التالية:
Report this page